
CS106B
Winter 2017

Handout #14S
February 13, 2017

Section Solutions 5

Problem One: Pointed Points about Pointers

The output of the program is shown here:

0: 137, 0
1: 137, 10
2: 137, 20
3: 137, 30
4: 137, 40
0: 137, 0
1: 137, 10
2: 137, 20
3: 137, 30
4: 137, 40
0: 137, 0
1: 137, 10
2: 137, 20
3: 137, 30
4: 137, 40

Remember that when passing a pointer to a function, the pointer is passed by value! This means that you
can change the contents of the array being pointed at, because those elements aren't copied when the
function is called. On the other hand, if you change which array is pointed at, the change does not persist
outside the function because you have only changed the copy of the pointer, not the original pointer itself.

Problem Two: Cleaning Up Your Messes

The first piece of code has two errors in it. First, the line

baratheon = targaryen;

causes a memory leak, because there is no longer a way to deallocate the array of three elements allocated
in the first line. Second, since both baratheon and targareon point to the same array, the last two lines
will cause an error.

The second piece of code is perfectly fine. Even though we execute

delete[] stark;

twice, the array referred to each time is different. Remember that you delete arrays, not pointers.

Finally, the last piece of code has a double-delete in it, because the pointers referred to in the last two
lines point to the same array.

1 / 8

Problem Three: Creative Destruction

The ordering is as follows:

• A constructor is called when elem is declared in main.

• A constructor is then called to set toPrint equal to a copy of elem.

• A constructor is then called to initialize the temp variable in printStack.

• When printStack exits, a destructor is called to clean up the temp variable.

• Also when printStack exits, a destructor is called to clean up the toPrint variable.

• When main exits, a destructor is called to clean up the elem variable.

2 / 8

Problem Four: Random Bag Grab Bag

Let’s begin by reviewing some aspects of this code.

i. What do the public and private keywords mean in RandomBag.h?

The public keyword indicates that the member functions listed underneath it are publicly accessi-
ble by anyone using the RandomBag class. This essentially means that they form the public inter-
face for the class.

The private keyword indicates that the data members listed underneath it are private and only
accessible by the class itself. This means that those data members are part of the private imple-
mentation of the class and aren’t something that clients should be touching.

ii. What does the :: notation mean in C++?

It’s the scope resolution operator. It’s used to indicate what logical part of the program a given
name belongs to. The case we’ll primarily see it used is in the context of defining member func-
tions in a .cpp file, where we need to indicate that the functions we’re implementing are actually
member functions of a class, not freestanding functions.

iii. What does the const keyword that appears in the declarations of the RandomBag::size() and
RandomBag::isEmpty() member functions mean?

It indicates that those member functions aren’t allowed to change the data members of the class.
Only const member functions can be called on an object when in a function that accepts an ob-
ject of that class by const reference.

iv. Look at the implementation of our removeRandom function. What is its worst-case time com-
plexity? How about its best-case time complexity? Its average-case time complexity?

The worst-case time complexity of an operation is O(n), which happens when we remove the very
first element from the Vector. Our best-case complexity is O(1) if we remove from the end of the
Vector. On average, the runtime is O(n), since on average n/2 elements need to get shifted over.

3 / 8

v. Based on your answer to the previous part of this question, what is the worst-case time complex-
ity of removing all the elements of an n-element RandomBag? What’s the best-case time com-
plexity? How about its average case?

The worst-case complexity would be O(n2), which would happen if we get very unlucky and al-
ways remove the very first element of the Vector, making the total work done roughly equal to
(n-1) + (n-2) + (n-3) + … + 2 + 1 = O(n2). The best-case complexity would be O(n), which hap-
pens if we always remove the first element of the Vector (n × O(1) = O(n). The average-case
time complexity is O(n2), since on average each removal does O(n) work and we do it n times.

vi. In the preceding discussion, we mentioned that removing the very last element of a Vector is
much more efficient that removing an element closer to the middle. Rewrite the member function
RandomBag::removeRandom so that it always runs in worst-case O(1) time.

There a couple of different ways to do this. One option is based on the insight that removing from the
very end a Vector is an O(1)-time operation, so if we remove the last element of the Vector at each step
we’ll get an O(1) worst-case bound. The problem is that the last element is decidedly not a random ele-
ment, since it always holds the last thing added. However, we can easily fix this by simply choosing a ran-
dom element of the array and swapping it with the one at the end. This makes the element at the end ran-
domly-chosen, which we still need to do, but makes deletions run in time O(1). Here’s some code for this.

int RandomBag::removeRandom() {
 if (isEmpty()) {
 error("That which is not cannot be!");
 }

 int index = randomInteger(0, size() - 1);
 int result = elems[index];

 swap(elems[index], elems[elems.size() - 1]);
 elems.remove(elems.size() - 1);
 return result;
}

4 / 8

vii. The Stack and Queue types each have peek member functions that let you see what element
would be removed next without actually removing anything. How might you write a member
function RandomBag::peek that works in the same way? Make sure that the answer you give
back is actually consistent with what gets removed next and that calling the member function
multiple times without any intervening additions always gives the same answer.

Part of the challenge here is that we need to find a way to determine what the next element to be removed
is going to be, but we have to do so in way that gives consistent results from call to call.

There are many different ways we can do this. One option, which guarantees a uniformly-random selec-
tion of elements from the RandomBag, is to store an extra variable keeping track of the index of the next
element to remove. Every time we add or remove an element, we’ll update this value to hold a new ran-
dom value. Here’s one way we can do this. First, the changes in the header:

class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int peek() const; // <-- Don't forget to make this const!

 int size() const;
 bool isEmpty() const;

private:
 Vector<int> elems;
 int nextIndex;
};

Next, the changes to the .cpp file. We’ve moved a lot of the logic out of RandomBag::removeRandom
into RandomBag::peek in order to unify the code paths and avoid duplicating our logic.

void RandomBag::add(int value) {
 elems += value;

 /* Stage a new element for removal. */
 nextIndex = randomInteger(0, elems.size() - 1);
}

int RandomBag::peek() const {
 if (isEmpty()) {
 error("That which is not cannot be!");
 }
 return elems[nextIndex];
}

int RandomBag::removeRandom() {
 int result = peek();

 swap(elems[nextIndex], elems[elems.size() - 1]);
 elems.remove(elems.size() - 1);

 /* Stage a new element for removal. */
 nextIndex = randomInteger(0, elems.size() - 1);
 return result;
}

5 / 8

Problem Five: Stackity Stack

i. What is the meaning of the term “logical size?” How does it compare to the term “allocated
size?” What’s the relationship between the two?

The logical size of the stack is the actual number of elements stored in the stack, whereas the allo-
cated size is the length of the elems array. The logical length can be any number between 0 (inclu-
sive) and allocatedSize (exclusive) depending on how many pushes and pops have been made.

ii. What is the OurStack() function? Why is each line in that function necessary?

This is the constructor. It’s responsible for setting all the variables in the OurStack class to a rea-
sonable set of defaults. The lines here set up the actual memory where the elements will be stored,
configure the initial logical length (0 elements stored), and the initial allocated length (which is the
default initial size given by the constant.)

iii. What is the ~OurStack() function? Why is each line in that function necessary? Why isn’t there
any code in there involving the logicalSize or allocatedSize data members?

This is the destructor. Its job is to deallocate any extra memory or resources that were allocated
by the OurStack class and not otherwise automatically reclaimed. Here, we deallocate the mem-
ory we allocated earlier by using delete[]. We don’t need to do anything to logicalSize or
allocatedSize because there were no dynamic allocations performed to get space for them.
Generally speaking, you only need to explicitly clean up resources that you explicitly allocated.

iv. In the OurStack::grow() function, one of the lines is delete[] elems, and in the next line we
immediately write elems = newArr;. Why is it safe to do this? Doesn’t deleting elems make it
unusable?

The statement delete[] elems; means “destroy the memory pointed at by elems” rather than
“destroy the elems variable.” As a result, after the first line executes, elems is still a perfectly safe
variable to reassign.

v. The OurStack::pop() function doesn’t seem to have any error-checking code in it. What hap-
pens if you try to pop off an empty stack?

Notice that OurStack::pop calls OurStack::peek, which in turn has its own error-checking. As
a result, trying to pop off an empty stack will trigger the custom error message from the
OurStack::peek member function.

6 / 8

vi. What is the significance of placing the OurStack::grow function in the private section of the
class? What does that mean? Why didn’t we mark it public?

This is a private member function. This is a member function that’s used as a part of the imple-
mentation of the class rather than the interface. Any clients of OurStack can’t access this func-
tion, which is a Good Thing because we don’t want rando’s coming along and increasing our
stack’s capacity unnecessarily.

Right now, our stack doubles its allocated length whenever it runs out of space and needs to grow. The
problem with this setup is that if we push a huge number of elements into our stack and then pop them all
off, we’ll still have a ton of memory used because we never shrink the array when it’s mostly unused.

vii. Explain why it would not be a good idea to cut the array size in half whenever fewer than half the
elements are in use.

Imagine we have a stack with logical size n – 1 and allocated size n. If we perform two pushes,
we’ll double our stack’s allocated size to 2n, which takes time O(n), and increase the logical size to
n+1. If we now do two pops, we’ll drop the logical size down to n-1, which is less than half the al-
located size. If we now shrink the allocated size by half down to n, we’ll have to do O(n) work
transferring elements over, ending with a stack with logical size n – 1 and allocated size n. Over-
all, we’ve done two pushes and two pops, we’re right back where we’ve started, and we’ve done
O(n) work. That’s a lot of work for very little payoff!

viii. Update the code for OurStack so that whenever the logical length drops below one quarter of the
allocated length, the array is reallocated at half its former length. As an edge case, ensure that the
allocated length is always at least equal to the initial allocated capacity.

There are many ways we can do this. We’re going to do this by replacing the OurStack::grow function
with a new OurStack::setCapacity function that lets us say what the new allocated size will be. Here’s
the updated class definition:

class OurStack {
public:
 OurStack();
 ~OurStack();

 void push(int value);
 int pop(int value);
 int peek(int value) const;

 int size() const;
 bool isEmpty() const;

private:
 void setCapacity(int capacity);

 int* elems;
 int logicalSize;
 int allocatedSize;
};

7 / 8

Here’s the updated functions from the .cpp file:

void OurStack::push(int value) {
 if (logicalSize == allocatedSize) {
 setCapacity(allocatedSize * 2);
 }

 elems[logicalSize] = value;
 logicalSize++;
}

void OurStack::pop() {
 int result = peek();
 logicalSize--;

 int (logicalSize < allocatedSize / 4) {
 setCapacity(allocatedSize / 2);
 }

 return result;
}

void OurStack::setCapacity(int capacity) {
 /* Never allocate fewer than kInitialSize cells in our array. */
 capacity = max(capacity, kInitialSize);

 int* newArr = new int[capacity];
 for (int i = 0; i < size(); i++) {
 newArr[i] = elems[i];
 }

 delete[] elems;
 elems = newArr;
 allocatedSize = capacity;
}

8 / 8

	Problem One: Pointed Points about Pointers
	Problem Two: Cleaning Up Your Messes
	Problem Three: Creative Destruction
	Problem Four: Random Bag Grab Bag
	int RandomBag::removeRandom() {
	if (isEmpty()) {
	error("That which is not cannot be!");
	}
	int index = randomInteger(0, size() - 1);
	int result = elems[index];
	swap(elems[index], elems[elems.size() - 1]);
	elems.remove(elems.size() - 1);
	return result;
	}
	class RandomBag {
	public:
	void add(int value);
	int removeRandom();
	int peek() const; // <-- Don't forget to make this const!
	int size() const;
	bool isEmpty() const;
	private:
	Vector<int> elems;
	int nextIndex;
	};
	void RandomBag::add(int value) {
	elems += value;
	/* Stage a new element for removal. */
	nextIndex = randomInteger(0, elems.size() - 1);
	}
	int RandomBag::peek() const {
	if (isEmpty()) {
	error("That which is not cannot be!");
	}
	return elems[nextIndex];
	}
	int RandomBag::removeRandom() {
	int result = peek();
	swap(elems[nextIndex], elems[elems.size() - 1]);
	elems.remove(elems.size() - 1);
	/* Stage a new element for removal. */
	nextIndex = randomInteger(0, elems.size() - 1);
	return result;
	}
	Problem Five: Stackity Stack
	i. What is the meaning of the term “logical size?” How does it compare to the term “allocated size?” What’s the relationship between the two?
	ii. What is the OurStack() function? Why is each line in that function necessary?
	This is the constructor. It’s responsible for setting all the variables in the OurStack class to a reasonable set of defaults. The lines here set up the actual memory where the elements will be stored, configure the initial logical length (0 elements stored), and the initial allocated length (which is the default initial size given by the constant.)
	iii. What is the ~OurStack() function? Why is each line in that function necessary? Why isn’t there any code in there involving the logicalSize or allocatedSize data members?
	iv. In the OurStack::grow() function, one of the lines is delete[] elems, and in the next line we immediately write elems = newArr;. Why is it safe to do this? Doesn’t deleting elems make it unusable?
	v. The OurStack::pop() function doesn’t seem to have any error-checking code in it. What happens if you try to pop off an empty stack?
	vi. What is the significance of placing the OurStack::grow function in the private section of the class? What does that mean? Why didn’t we mark it public?
	Right now, our stack doubles its allocated length whenever it runs out of space and needs to grow. The problem with this setup is that if we push a huge number of elements into our stack and then pop them all off, we’ll still have a ton of memory used because we never shrink the array when it’s mostly unused.
	vii. Explain why it would not be a good idea to cut the array size in half whenever fewer than half the elements are in use.
	viii. Update the code for OurStack so that whenever the logical length drops below one quarter of the allocated length, the array is reallocated at half its former length. As an edge case, ensure that the allocated length is always at least equal to the initial allocated capacity.
	There are many ways we can do this. We’re going to do this by replacing the OurStack::grow function with a new OurStack::setCapacity function that lets us say what the new allocated size will be. Here’s the updated class definition:
	Here’s the updated functions from the .cpp file:

